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Percolation in a fluid mixture system~FMS! containing adhesive charged hard spheres~ACHSs! and point
charges can be analytically estimated by regarding the contact of an ACHS with another ACHS as the
formation of directly connected bonds between the ACHSs. A feature of the percolation in the FMS can be
determined via the phase diagrams displayed for the volume fractionf of the ACHSs and the reciprocalz00

21

of the strength of the adhesive interaction. In thef-z00
21 plane, the phase diagrams indicate that the region in

which percolation is induced is less dominant than that in which phase separation is induced if the ACHSs are
highly charged spheres.

PACS number~s!: 82.70.Gg, 64.60.Ak, 82.70.Dd

I. INTRODUCTION

Percolation behavior that contributes to macroscopic phe-
nomena induced in fluids has been determined from various
phenomena such as gelation@1#, the thermodynamic and dy-
namic properties of liquid water@2#, and the conductor-
insulator transition in liquid metals@3#. The contribution of
percolation behavior to the properties of a water-oil micro-
emulsion~WOM! @4# can be recognized from several mac-
roscopic phenomena. As such phenomena, the electrical con-
ductivity of WOMs @5,6#, the dynamic viscosity of WOMs
@6#, and the dielectric permitivity in WOMs@7# are remark-
able. The generation of the gel phase due to the aggregation
of ionic colloidal particles~ICPs! @8# can be regarded as
percolation behavior in a fluid that contains particles having
both electrostatic repulsion and short-ranged nonelectrostatic
attraction.

Percolation behavior in a fluid consisting of particles may
strongly depend on the characteristics of the interactions be-
tween the particles. If an interaction between the particles
yields attraction, the formation of particle clusters can be
enhanced. Depending on the characteristic of the attraction,
which can determine microscopic structures such as the size
and number of clusters, particular features of the fluid can be
formed. According to the estimation of Hagen and Frenkel
@9#, the liquid phase of a fluid consisting of hard particles
having an attractive Yukawa interaction is unstable when the
range of the attractive part of the Yukawa potential is less
than approximately one-sixth of the hard-core diameter.

The present interest, generated by the fluid behavior de-
pendent on the characteristics of the interactions between the
particles, is focused on percolation in a fluid containing hard
particles having both electrostatic repulsion and short-ranged
nonelectrostatic attraction. The present work is concerned
with continuous percolation in a fluid mixture system~FMS!
composed of adhesive charged hard spheres~ACHSs! and
point charges. The ACHSs are charged spheres with an ad-
hesive interaction that contributes to attraction in the imme-
diate vicinity of their surfaces@10#.

The stability of a dispersed state in a FMS, which con-
tains ICPs, depends on several parameters such as the densi-
ties of the ICPs and small ionic species, the charge on each
ICP, the charge carried by the small ionic species, and the
strength of nonelectrostatical attraction between the ICPs. As
is well known, the addition of small ionic species to an ionic
colloidal system can cause the ICPs to aggregate@11#. If
particular conditions are satisfied, the aggregation of the
ICPs may induce the gel phase@8#. In order to obtain infor-
mation concerning such aggregation, a FMS composed of
ACHSs and point charges can be useful as a model system
since the mathematical estimation relevant to the aggregation
of ICPs can be easily carried out@12#. In the present work, a
FMS is employed to obtain information on the aggregation
that induces percolation.

When the estimated size of the physical clusters is re-
quired to obtain information of the percolation in a fluid
composed of particles with particular properties, the concept
of a physical cluster as introduced by Hill@13# plays an
important role. Hill demonstrated that the contribution
exp(2bui j ) of the i and j particles, due to the pair potential
ui j , to the grand partition function for a fluid system con-
taining these particles can be divided into two parts@13#.
One part exp(2bu i j

1) represents the portion dependent on
u i j

1 contributing to the interaction between thei and j par-
ticles having relative kinetic energy not exceeding the mag-
nitude of2ui j (ui j,0). Hereu i j

1 is the effective potential
between thei and j particles that form a bound pair. The
other part is given by exp(2buij* ), being dependent onui j*
contributing to the interaction between thei and j particles
that have relative kinetic energy exceeding the magnitude of
2ui j (ui j,0). In this case,ui j* is the effective potential be-
tween thei and j particles that form an unbound pair. Ifui j
is positive,ui j* is equivalent toui j . Then,u i j

1 is infinite. The
coefficientb mentioned above is defined asb51/kT, where
T is the temperature andk the Boltzmann constant.

By introducing exp(2bu i j
1) and exp(2buij* ), the state of

a bound pair ofi and j particles can be distinguished from
the state of an unbound pair ofi and j particles in the grand
partition function@13#. This indicates that, from the products
of f functions corresponding to Mayer’s mathematical clus-
ters, particular products containingf1 functions@defined by
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the use of exp(2bu i j
1)# can be extracted@14#. The particular

products containingf1 functions can then represent physical
clusters. Owing to this fact, the pair-correlation function
gi j (r ) can be expressed as the sum of the two contributions,
as demonstrated by Coniglio, De Angelis, and Foriani@15#.
One contribution is given by the pair-connectedness function
Pi j ~r i ,r j !. This function is defined such that
r ir j Pi j ~r i ,r j )dr idr j represents the probability that a particle
in dr i at r i and another particle indr j at r j simultaneously
belong to the same cluster. The other contribution is given by
the blocking functionDi j ~r i ,r j !. This function is defined
such thatr ir jDi j ~r i ,r j )dr idr j represents the probability that
a particle indr i at r i and one indr j at r j do not simulta-
neously belong to the same cluster.

For estimating percolation behavior induced in a fluid, the
pair-connectedness function should be known. The pair-
connectedness function satisfies the Ornstein-Zernike rela-
tion established by Coniglio, De Angelis, and Foriani@15#.
Using the Percus-Yevick approximation~PYA! and the
Wiener-Hopf factorization technique introduced in the work
of Baxter@16#, Chiew and Glandt@17# analytically estimated
the percolation behavior described by the Ornstein-Zernike
relation in the permeable and adhesive sphere systems. The
formally exact closure for solving the Ornstein-Zernike rela-
tion has been derived by Stell@18#.

When the distance between particles is within at least a
certain range, particular microscopic behavior, for example,
electron transfer and exited energy transfer, can significantly
occur between the particles. The particular macroscopic be-
havior induced by the microscopic behavior mentioned
above, such as the electric conductor-insulator transition in a
fluid, can be simply regarded as the percolation behavior in a
fluid composed of hard-core permeable-shell spheres@i.e.,
the penetrable concentric shell model~PCSM!# or that in a
fluid composed of randomly centered spheres~RCSs!, al-
though it is assumed that no attraction exists between the
particles.

DeSimone, Demoulini, and Stratt@19# analytically esti-
mated the percolation behavior in PCSM fluid systems using
the PYA. From Monte Carlo simulations of PCSM fluid sys-
tems, Sevick, Monson, and Otlino@20# revealed that the suc-
cess of the PYA in determining the inverse mean cluster size
could be regarded as quite satisfactory in view of the sim-
plicity with which it can be applied to complex problems. In
addition, an alternative approximation scheme, beyond the
Percus-Yevick closure, was applied by Chiew and Stell@21#
to study the percolation behavior in a one-component RCS
fluid.

By regarding the attraction between particles as the con-
tribution of a square-well potential, percolation behavior due
to attraction has been studied. With the use of Monte Carlo
simulations, Safran, Webman, and Grest@22# estimated the
percolation behavior in square-well fluid systems. Employ-
ing the PYA, Netemeyer and Glandt@23# numerically deter-
mined the percolation threshold and the pair-connectedness
function for a square-well fluid system. Chiew and Wang
@24# determined the percolation thresholds and the pair-
connectedness function for a square-well fluid from Monte
Carlo simulations. They demonstrated, furthermore, on the
basis of a comparison between the Monte Carlo data and the
Percus-Yevick solution, that the percolation threshold de-

rived from the PYA yielded fairly good estimates, except at
low temperatures and high densities.

The adhesive potential can be described as an infinitely
narrow and infinitely deep square-well potential. Using the
PYA, Chiew and Glandt@17# analytically derived the perco-
lation threshold for a fluid system containing hard spheres
interacting with the contribution of the adhesive potential in
the immediate vicinity of their surfaces. This fluid system is
a system where the first-order phase transition can be in-
duced, as shown by Baxter@10#. Seaton and Glandt@25#
demonstrated that the percolation threshold evaluated by
means of the PYA for a fluid with adhesive hard spheres
agreed rather well with that evaluated by means of Monte
Carlo simulations, except at extremely low densities and suf-
ficiently high densities. Also, simulations of a fluid system
based on a recent Monte Carlo algorithm were performed by
Kranendonk and Frenkel@26#.

Presently, it should be noted that a size monodisperse
system consisting of equally sized adhesive hard spheres,
when treated in an exact manner rather than with the PYA,
does not have thermodynamically stable phases that possess
practically physical meaning, as was demonstrated by Stell
@27#. Fortunately, when such a system is treated by an ap-
proximation in which the singularity induced by thed func-
tion can be avoided as in the PYA, it can be regarded as a
useful model having thermodynamically adequate properties
@10,26,28,29#. For the approximation, it has been shown that
the system can undergo a gas-liquid transition@28# or a
solid-liquid transition@30#. The approximation applied in the
present work corresponds to the approximation mentioned
above.

The pair potential, with a hard core and Yukawa tail, is
more realistic than the square-well potential having a hard
core. Using the pair potential and the mean-spherical ap-
proximation~MSA!, the percolation behavior in fluids con-
sisting of Yukawa hard spheres was examined by Xu and
Stell @31#. These fluids do not have a stable liquid phase if
the range of the attraction part of the Yukawa potential is
sufficiently short ranged@9,32#. The gas-liquid transition
then disappears in the fluids. The range of the attractive part
of the pair potential between particles determines the stabil-
ity of the liquid phase in a system~for example, either a
molecular system@33# or colloidal systems@34#!.

In contrast to the gas-liquid transition, a dense system of
spherical particles with a short-ranged attractive interaction,
due to either the Yukawa potential or the square-well poten-
tial, can undergo a first-order transition from a dense to a
more expanded solid phase having the same structure@35#.
Such a solid-solid transition at finite temperatures, however,
cannot occur in a system composed of noncharged adhesive
hard spheres of equal diameter, as predicted in the work of
Stell @27#. Frenkel and his co-workers@35# revealed that at
finite temperatures, the only stable phases in this system are
the close-packed solid and the infinite-dilute gas. In the sys-
tem, all other phases are metastable.

When the nonelectrostatic attraction between ICPs, con-
tributing within a sufficiently short range compared to the
diameter of the ICP, can no longer be ignored, the pair po-
tential contributing to the interaction between the ICPs may
introduce a complexity to the analytical estimation of perco-
lation. The pair potential can then be given as the sum of the
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Coulomb potential, the potential contributing to the nonelec-
trostatic attraction, and the hard-core potential. If the poten-
tial contributing to the nonelectrostatic attraction can be re-
garded as an adhesive potential, the complexity should be
easily avoided. This is expected from the fact that the inte-
gral equation for the pair-correlation functiongi j ~r ! in FMSs
consisting of ACHSs can be analytically solved@36,37#. In
order to analytically estimate percolation behavior in a sys-
tem containing ICPs, it is possible that a FMS containing
ACHSs that interact with an adhesive potential, a Coulomb
potential, and a hard-core potential is a rather realistic model
system, when the contribution of the nonelectrostatic attrac-
tion must be considered. It has been demonstrated that a
system containing adhesive hard spheres could lack adequate
thermodynamics@27#. Fortunately, the FMS could be a
model with thermodynamically adequate properties since the
FMS is treated by an approximation in which a singularity
induced by thed function can be avoided.

Percolation behavior in the multicomponent FMS must be
estimated by solving the Ornstein-Zernike relation for the
pair-connectedness function. The Ornstein-Zernike relation
for this FMS was established by Chiew, Stell, and Glandt
@38# while deriving the formally exact closure for this rela-
tion. Employing the PYA, they also analytically obtained the
pair-connectedness function, mean cluster size, and percola-
tion thresholds for both a FMS consisting of RCSs and one
consisting of permeable spheres@38#. Wu and Chiew@39#
studied the percolation in binary mixtures of RCSs, based on
a selective particle-connectivity criterion. When, in the crite-
rion, particles of different species are allowed to form di-
rectly connected bonds, the percolation densities differ con-
siderably from those found in a simple percolation problem
for a binary mixture of RCSs@39#.

In the present paper, percolation will be analytically esti-
mated for the formation of directly connected bonds between
the ACHSs contained in a FMS that also has point charges.
The percolation threshold must be estimated for the FMS in
order to find the dependence of the percolation behavior on
the charge of the ACHS. The charge is a significant factor
that strongly influences the aggregation of the ACHSs.
Therefore, the change in the percolation threshold due to the
change in the magnitude of the charge is presently of inter-
est. For this reason, the influence of the charge on the per-
colation threshold will be briefly examined.

II. PAIR CONNECTEDNESS

By using the pair-correlation functiongi j , the probability
of locating ani -species particle and aj -species particle in
volume elementsdr i at r i ~point i ! anddr j at r j ~point j !,
respectively, is given as

r ir jgi j ~r i ,r j !dr i dr j ,

where r i and r j are the densities of thei species andj
species, respectively. This probability is the sum of two
contributions. The contribution is the probability
r ir j Pi j ~r i ,r j )dr i dr j that a particle indr i at r i and another
particle indr j at r j belong to the same physical cluster. The
other contribution is the probabilityr ir jDi j ~r i ,r j )dr idr j that
the two particles do not belong to the same cluster. Hence
the pair-correlation functiongi j must be expressed as

gi j5Pi j1Di j . ~1!

The Mayerf function f i j5exp(2bui j )21, according to
Hill’s concept @13#, is separated into two parts as

f i j5 f i j
11 f i j* ,

where f i j
1 and f i j* are defined as

f i j
1[exp~2bui j

1!, f i j*[exp~2bui j* !21.

Hence thef i j
1 and f i j* represent the bound and unbound pairs

of particles, respectively. In Mayer’s mathematical clusters
~defined in terms off i j bonds!, which constitutegi j , each
bond f i j should be replaced byf i j

11 f i j* in order to find dia-
grams contributing toPi j . Thus it can be proved that the
diagrams that should be identified with the collection of dia-
grams with at least one path of allf1 bonds between the root
points i and j are contained in the diagrams contributing to
gi j , as shown by Coniglio, De Angelis, and Foriani@15#.

The contribution of the diagrams toPi j can be divided
into two parts. One part is the contributionN i j

1 of nodal
diagrams with at least one path of allf1 bonds betweeni
and j . The other part is the contributionC i j

1 of non-nodal
diagrams with at least one path of allf1 bonds betweeni
and j . Thus it should be expressed as

Pi j5Ci j
11Ni j

1 . ~2!

A nodal diagram is a diagram containing at least one nodal
point. A nodal point is defined as a field point such that all
paths betweeni and j pass through that point. If the nodal
diagram has at least one path of allf1 bonds betweeni and
j and the pointk is the nodal point closest toi in the nodal
diagram~so that the diagram betweeni andk does not have
nodal points!, N i j

1 is then given by a convolution integral as

Ni j
15 (

k50

m21

rkE Cik
1Pkj dr k . ~3!

Herem is the number of species that may occupy the nodal
point k. Thus the Ornstein-Zernike relation similar to that
derived by Coniglio, De Angelis, and Foriani@15# is ob-
tained from Eqs.~2! and ~3! as

Pi j5Ci j
11 (

k50

m21

rkE Cik
1Pkj dr k . ~4!

This equation is an Ornstein-Zernike relation for the pair-
connectedness function in a multicomponent system and cor-
responds to that derived with the derivation of the formally
exact closure by Chiew, Stell, and Glandt@38#.

According to the PYA, the pair-correlation functiongi j
PY is

given by

gi j
PYexp~bui j !511Ni j , ~5!

whereNi j is the contribution of the nodal diagrams. The
contributionNi j can be separated into two terms:N i j

1 and
Ni j* . The termNi j* is the contribution of all nodal diagrams
composed of no paths of allf1 bonds betweeni and j . By
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considering Eqs.~1!, ~2!, and ~5! with exp(2buij)5fij
11fij*

11, a closure condition imposed onPi j andC i j
1 is obtained

as

Pi j5exp~2bui j
1!gi j

PYexp~bui j !1exp~2bui j* !~Pi j2Ci j
1!.

~6!

This formula corresponds to that given by Coniglio, De An-
gelis, and Foriani@15# and is an approximate expression for
the exact expression given by Chiew, Stell, and Glandt@38#.

III. MEAN SIZE OF PHYSICAL CLUSTERS

A. Determination of the mean size

The mean size of physical clustersS is given by

S5

(
s
s2ns

(
s
sns

, ~7!

wherens is the equilibrium number of physical clusters con-
sisting of s particles. If the number of species that may be
included in the physical clusters ism, the relation between
Pi j andns , according to the formula given by Coniglio, De
Angelis, and Foriani@15#, should be given by

(
s>2

s~s21!ns5 (
i50

m21

(
j50

m21

r ir jE Pi j dr i dr j . ~8!

If it can be assumed that the probabilitypi of i species
existing in a cluster is independent ofs, r i in the volumeV is
then given by

r i5
1

V
pi(

s
sns . ~9!

Dividing Eq. ~8! by (ssns and considering Eqs.~9! and~7!,
the mean size of the physical clusterS in an isotropic system
can be determined using the pair-connectednessPi j (r ) as

S511
1

(
k50

m21

rk

(
i50

m21

(
j50

m21

r ir jE Pi j ~r !dr . ~10!

B. A FMS containing ACHSs

The pair potentialui j (r ) in a FMS with ACHSs is repre-
sented as

exp@2bui j ~r !#5
z i j
12

s i jd~r2s i j !, 0,r<s i j ~11a!

and

exp@2bui j ~r !#5exp@2bui j
Coul~r !#, s i j,r , ~11b!

wherez i j is a parameter representing the strength of the ad-
hesive interaction andui j

Coul(r ) the Coulomb potential be-
tween thei -species ACHS and thej -species ACHS. The
reciprocalz i j

21 corresponds to the parametert introduced by

Baxter @10#. In Eqs.~11a! and ~11b!, s i j is defined with the
use of the diameters i for the i species and the diameters j
for the j species as

s i j[
1
2 ~s i1s j !. ~12!

The pair-correlation functiongi j (r ) within the core is then
given by

gi j ~r !5
| i j

12
s i jd~r2s i j !, 0,r<s i j , ~13!

where| i j is the association parameter@36,37#. The param-
eter | i j is expressed in terms of the mean value^Ni j & ~an
average coordination number! for the number ofj ACHSs
contacting ani ACHS as

| i j5
3^Ni j &
pr js i j

3 . ~14!

The average coordination number is expressed as

^Ni j &5r jE
0

s i j
1

gi j ~r !4pr 2dr,

where

s i j
6[ lim

d→0
s i j6d.

According to the definition of Chiew and Glandt@17#, it is
assumed that the contact of one ACHS with another results
in the formation of directly connected bonds between the
ACHSs. Then, Hill’s concept@13# can yield the following
relations owing to Eqs.~11a! and ~11b!:

exp@2bui j
1~r !#5

z i j
12

s i jd~r2s i j !, 0,r<s i j , ~15a!

exp@2bui j
1~r !#50, s i j,r , ~15b!

exp@2bui j* ~r !#50, 0,r<s i j , ~15c!

and

exp@2bui j* ~r !#5exp@2bui j
Coul~r !#, s i j,r . ~15d!

Substituting Eqs.~13!, ~15a!, ~15b!, ~15c!, and~15d! into
Eq. ~6!, the following relations are obtained:

Pi j ~r !5
| i j

12
s i jd~r2s i j ! 0,r<s i j , ~16a!

and

Ci j
1~r !5Pi j ~r !$12exp@bui j

Coul~r !#%, s i j,r . ~16b!

As can be seen in Eq.~16b!, the relation betweenC i j
1(r ) and

Pi j (r ) has the same form as the relation betweengi j (r ) and
the direct correlation functionci j (r ) due to the PYA. Ac-
cording to Eq.~16b!, C i j

1(r ), as well asci j (r ), approaches
zero at least owing to the term$12exp@buij

Coul(r )#% as r
increases. Therefore, by considering the approximation used
by Xu and Stell@31# for analytically estimating percolation
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in Yukawa fluids, it is assumed thatC i j
1(r ) has an approxi-

mate expression similar to that forci j (r ) due to the MSA.
Thus the approximation forC i j

1(r ) is represented as

Ci j
1~r !5Ci j

01~r !2 lim
m→0

bui j
Coul~r !exp~2mr !, ~17a!

where

Ci j
01~r !50, s i j

1,r . ~17b!

In Eq. ~17a!, C i j
1(r ) is split into two parts: the short-ranged

part C i j
01(r ) and the remainder, which equals the long-

ranged contribution. The remainder has an exponential
damping factor containing the parameterm, introduced to
avoid the divergence of the integrals. This expression for
C i j

1(r ) has the same form as an approximate expression for
ci j (r ), which should be given in a FMS with particles having
long-ranged interactions, such as Coulomb interactions@40#.
By using the approximate expression given in Eq.~17a!, an
analytical expression forS can be somewhat readily derived
from a pair-connectedness function that satisfies Eq.~4!,
since a mathematical treatment used in the derivation of ana-
lytical solutions for the pair-correlation function in a FMS
containing ACHSs@36,37# is applicable.

Considering Eq.~17a!, the Fourier transform of Eq.~4! is
given by

(
k50

m21

@d ik1 P̃ik~k!#@dk j2C̃k j
1~k!#5d i j , ~18!

where

P̃i j ~k!52~r ir j !
1/2E

0

`

Ĵi j ~r !cos~kr !dr ~19!

and

C̃i j
1~k!52~r ir j !

1/2E
0

`

Si j
1~r !cos~kr !dr2 lim

m→0

a i j

k21m2 ,

~20!

with

Ĵi j ~r !52pE
r

`

Pi j ~ t !t dt, ~21!

Si j
1~r !52pE

r

`

Ci j
01~ t !t dt, ~22!

and

a i j5a0
2~r ir j !

1/2zizj . ~23!

Here the charges of thei ACHS andj ACHS arezie andzje,
respectively, anda0

2 in Eq. ~23! is defined as

a0
2[

4pbe2

«
, ~24!

where« is the macroscopical dielectric constant of the FMS.
Baxter’sQ function, dependent on the nature ofC i j

1(r ), can
be introduced via the equation@36,37#

d i j2C̃i j
01~k!1

a i j

k21m2 5 (
k50

m21

Q̃ik~k!Q̃jk~2k!, ~25!

where the left-hand side is equivalent tod i j2C̃ i j
1(k) and

Q̃i j (k) is

Q̃i j ~k!5d i j2~r ir j !
1/2E

l j i

s j i
Qi j
0 ~r !exp~ ikr !dr

1~r ir j !
1/2Ai j E

l j i

`

exp~2mr !exp~ ikr !dr,

~26!

with

Qi j
0 ~r ![Qi j ~r !1Ai jexp~2mur u! ~27!

and

l j i[
1
2 ~s j2s i !. ~28!

The expression forQ i j
0 (r ) defined by Eq.~27! should be zero

just beyond the contact distance, owing to the nature of
C i j

01(r ) @36,37#, i.e.,

Qi j
0 ~r !50 ~r.s i j !. ~29!

When the formula obtained by multiplying both sides of Eq.
~25! by exp (2 ikr ) is integrated with respect tok over the
entire range from2` to 1`, the divergence of this integra-
tion @the same integration as that in the process for estimat-
ing gi j (r ) @36## at the limitm50 can be avoided if the coef-
ficientsAi j introduced in Eq.~26! satisfy the relation

a i j5~r ir j !
1/2(

k50

m21

rkAikAjk .

As is known via the estimation of the pair-correlation func-
tion in the FMS containing ACHSs@36#, the comparison of
this relation with Eq.~23! results in the determination of the
relation

Ai j[ziaj , ~30!

where

(
k50

m21

rkak
25a0

2. ~31!

Substitution of Eq.~25! into Eq. ~18! yields

d i j1 P̃i j ~k!5 (
k50

m21

Q̃ki
21~2k!Q̃k j

21~k!. ~32!

From Eq.~32!, the following formula can be derived:

~r ir j !
1/2E Pi j ~r !dr52d i j1 (

k50

m21

Q̃ki
21~0!Q̃k j

21~0!. ~33!
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Substituting Eq.~33! into Eq.~10! results in the mean cluster
sizeS being expressed with theQ function as

S5 (
i50

m21 F (
j50

m21 S r i
r tD 1/2Q̃i j

21~0!G2, ~34a!

where

r t[ (
i50

m21

r i . ~34b!

ThusS can be evaluated whenQ̃ i j
21(0) is given.

C. Estimation of Q̃ ij
21
„0…

The formula for the formal determination ofQ̃ i j
21(2k)

can be obtained by modifying Eq.~32!. If both sides of this
formula multiplied by exp (2 ikr ) are integrated with re-
spect tok over the entire range from2` to 1` by consid-
ering thatQ̃ i j

21(2k) is nonsingular, then the following for-
mula can be obtained@36,37#:

Ĵi j ~r !5Qi j
0 ~r !2Ai j1 (

k50

m21

rkE
l jk

s jk
dt Ĵik~ ur2tu!Qkj

0 ~ t !

2 (
k50

m21

rkE
l jk

`

dt Ĵik~ ur2tu!Akj . ~35!

Comparing the differenceĴi j (s i j
2)2 Ĵi j (s i j

1) estimated by
the use of Eqs.~16a! and~21! with that estimated by the use
of Eqs.~35!, ~16a!, and~29! yields

Qi j
0 ~s i j !5

p

6
| i js i j

2 . ~36!

Substituting the derivative of Eq.~21! with respect tor into
the derivative of Eq.~35! with respect tor , the following
relation for theQ function can be obtained:

d

dr
Qi j
0 ~r !5 (

k50

m21

rkJikAk j ~r,s i j !, ~37!

where

Jik[ Ĵik~0!. ~38!

Integration of Eq.~37!, taking into account Eqs.~29!, ~30!,
and ~36!, results in

Qi j
0 ~r !5~r2s i j !Qi j8 1Qi j

l ~r,s i j !, ~39!

where

Qi j8 5Biaj ~40!

and

Qi j
l [

p

6
| i js i j

2 , ~41!

with

Bi[ (
k50

m21

rkJikzk . ~42!

If Eq. ~39! is substituted into Eq.~26!, the following equation
can be obtained:

Q̃i j ~0!5d i j2~r ir j !
1/2s i i ~Qi j

l 2 1
2s i iQi j8 !

1~r ir j !
1/2aizj

exp~2ml i j !

m
. ~43!

Assuming thatC i j
01 has a symmetry similar to that of the

direct-correlation function@36,37#, the following relation is
determined:

Si j
1~l j i !5Sji

1~l i j !. ~44!

ForSji
1(r ), which can be derived from the integration of Eq.

~25! times exp(2 ikr ) with respect tok over the entire range
(2`,k,`) @36#, the relation given by Eq.~44! results in

Qi j
0 ~l j i !2Ai j5Qji

0 ~l i j !2Aji . ~45!

If Eq. ~39! is substituted into Eq.~45!, the following re-
lation betweenBi andai can then be obtained:

2~s i i Bi1zi !aj5~s j j Bj1zj !ai1Qji
l 2Qi j

l . ~46!

Moreover, by substitutingak given by Eq.~46! into Eq.~31!,
the following formula is determined:

ai
2 (
k50

m21

rkZk
222ai (

k50

m21

rkZk~Qki
l 2Qik

l !1 (
k50

m21

rk~Qki
l 2Qik

l !2

2a0
2Zi

250, ~47!

where

Zj[s j j Bj1zj . ~48!

Next, sinceJik is defined by Eq.~38!, substitution of Eq.
~35! into Eq. ~42! yields

Bj52 (
k50

m21

rk~zk1
1
2skkBk!skkBkaj

1 (
k50

m21

rk~zk1skkBk!Qkj
l 2 (

k50

m21

rkzk
2aj

22p (
l50

m21

(
k50

m21

r lzlrkzkajE
0

`

Plk~ t !t
2dt. ~49!

If Eq. ~48! and the electroneutrality condition discussed in
the Appendix are considered, Eq.~49! can be modified as

Zj52
ajs j j

2 (
k50

m21

rkZk
21s j j (

k50

m21

rkZkQk j
l 1zj . ~50!

Thus the unknown factorsai andZi can be determined by
the use of Eqs.~47! and ~50!, so thatQi j8 given by Eq.~40!
can also be determined since it can be estimated through Eq.
~48! as
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Qi j8 5
Zi2zi

s i i
aj . ~51!

Ultimately, the unknown factorsQi j8 andai in Eq. ~43! can
be estimated using Eqs.~47!, ~50!, and ~51!, so thatQ̃i j (0)
given by Eq.~43! can also be determined. If the inverse of
Q̃i j (0) is substituted into Eq.~34a!, the mean size of the
physical clustersS can be obtained.

IV. PERCOLATION IN A FMS

A. A FMS composed of ACHSs and point charges

The value of Q̃i j (0) is given by Eq. ~43!, so that
((r j )

1/2Q̃ i j
21(0), which is necessary for evaluatingS, can be

estimated. The estimation of the inverse ofQ̃i j (0), however,
is difficult.

It is assumed that in the FMS containing ACHSs, the
adhesive interaction exists only between the charged hard
spheres of species 0, while species 1 and 2 are point charges.
This can be expressed as

|00Þ0, |015|025|105|205|115|125|215|2250,
~52a!

s0Þ0, s15s250. ~52b!

Equation~43! can then be simplified, so thatQ̃ i j
21(0) at the

limit m50 can be readily derived as

D0Q̃i j
21~0!5Mi j2Âi B̂j1d i j (

k50

2

ÂkB̂k

~ i50,1,2; j50,1,2!, ~53!

where

Mi j5~2Â1d2 j1Â2d1 j !Ud0i d1i d2i

B̂0 B̂1 B̂2

y0 y1 y2

U ,
Âi[~r i !

1/2zi ,

B̂i[~r i !
1/2ai ,

yi[2~r0r i !
1/2s00~Q0i

l 2 1
2s00Q0i8 !,

and

D0[g~r0z0Z01r1z1
21r2z2

2!

3S 12
r1z1

21r2z2
2

r0z0Z01r1z1
21r2z2

2

1

2
^N00& D , ~54!

with

g[
ai
Zi
. ~55!

The average coordination number^N00& introduced in Eq.
~54! can be found by substituting Eq.~14! into Eq. ~41! as

^N00&52s00r0Q00
l . ~56!

The coefficientg defined by Eq.~55! can be determined as a
coefficient independent of species by considering Eq.~46!
with Eq. ~48! whenQ i j

l 2Q ji
l 50 is satisfied.

Using Eqs.~53! and ~56! with Eqs. ~51! and ~55!, the
following formulas can be obtained:

(
i

~r i !
1/2Q̃0i

21~0!5
g

D0 Ar0k
2, ~56a!

(
i

~r i !
1/2Q̃1i

21~0!5
g

D0 Ar1@k21r0~z02z1!~Z02z0!

1r2z2~z12z2!
1
2 ^N00&#, ~56b!

and

(
i

~r i !
1/2Q̃2i

21~0!5
g

D0 Ar2@k21r0~z02z2!~Z02z0!

1r1z1~z22z1!
1
2 ^N00&#, ~56c!

where

k2[r0z0
21r1z1

21r2z2
2.

Substitutingaj given by Eq.~47! into Eq. ~50! results in
the formula

1

2
^N00&1

z0
Z0

211S a0
2s0

2

4
~r0Z0

21r1z1
21r2z2

2! D 1/250

~57!

since the conditions described by Eqs.~52a! and ~52b!
should be satisfied. Therefore, the unknown coefficientZ0
can be determined by use of Eq.~57!.

B. FMS percolation

The mean cluster sizeS can be evaluated by substituting
Eqs.~56a!, ~56b!, and~56c! into Eq. ~34a! as

S5S g

D0D 2 1

r t
ŝ, ~58a!

where, owing to Eq.~34b! and the electroneutrality condi-
tion,

r t5S 12
z0
z1

D r01S 12
z2
z1

D r2 ~58b!

and

ŝ[k4r t1r0~Z02z0!$k
2@r0~Z02z0!1r tz0#

1z0r
t@r0z0~Z02z0!1k2#%

1 1
4r2~r t2r02r2!~z12z2!

2^N00&

3$~k22r0z0
2!^N00&24@r0z0~Z02z0!1k2#%.

~58c!

The mean cluster sizeS becomes infinite at the percolation
threshold, so that the percolation transition occurs atD050.
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Hence the average coordination number at the percolation
threshold should be determined by using Eq.~54! as

^N00&
p52S 11

r0z0Z0
r1z1

21r2z2
2D , ~59!

where ^N00&
p representŝN00& at the percolation threshold.

This result is the same as that obtained for a fluid of non-
charged adhesive hard spheres@17# if z0 equals zero. The
value of ^N00&

p at z0Þ0 is greater than 2, however, since
z0Z0 is positive, based on the relationz0/Z0.0, which can
be derived from Eqs.~47! and ~50!.

Ultimately, by substitutingZ0 derived from Eq.~59! into
Eq. ~57!, ^N00&

p can be obtained as

^N00&
p52$11@j~12 1

4hfj2!#21/2%, ~60!

where

f[pr0s0
3/6,

h[6a0
2z0

2/ps0 ,

and

j[z1 /z01~r2 /r0!~z12z2!~z2 /z0
2!.

On the other hand, the relation between^N00& andz00 has
been given elsewhere@12#. It is assumed that Eqs.~52a! and
~52b!, as well as the electroneutrality conditionz0r0
1z1r11z2r250, can be satisfied. The value of^N00& can
then be determined from the parametersz00, h, j, andf, by
the use of the two equations

^N00&5212Ĝ1J2S hf

x~h,f,j;Ĝ!
D 1/2 ~61a!

and

^N00&52J1
12

z00
22A2@x~h,f,j;Ĝ!1F~z00,h,f!#1/2,

~61b!

where Ĝ is an unknown coefficient determined via these
equations. The other terms are defined as

x~h,f,j;Ĝ![Ĝ21 1
4hfj,

F~z00,h,f![F~z00,f!2 1
4hf,

and

J[
6f

12f
,

with

F~z00,f![
1

4
J21

1

2 S 6

z00
D 21S 6

z00
21DJ.

If the unknown coefficientĜ at ^N00&5^N00&
p is ex-

pressed asĜp, by making use of Eq.~61b! with given values
of h5h8 andj5j8, Ĝp can be determined as

@Ĝp#252F~z00
p ,fp!1

1

4
h8fp~12j8!

1
1

8 S 2Jp1
12

z00
p 2^N00&

pD 2, ~62!

wherefp, Jp, andz 00
p are the values off, J, andz00 at the

percolation threshold, respectively. The values offp andz 00
p

ath5h8 andj5j8 can be determined by the use of Eqs.~60!,
~61a!, and~62!.

If phase separation, the so-called spinodal decomposition,
due to the aggregation of ACHSs can be induced in a FMS,
the following condition@12# should be satisfied:

x~h,f,j;Ĝ!1F~z00,h,f!,0.

A spinodal curve found for this FMS corresponds to a curve
determined with parameters that satisfy the condition@12#

x~h,f,j;Ĝ!1F~z00,h,f!50. ~63!

Therefore, if the average coordination number evaluated for
the values of the parameters on a spinodal curve is expressed
as ^N00&

s, it should satisfy the following relation owing to
Eq. ~61b!:

^N00&
s52J1

12

z00
. ~64!

If Eqs. ~63! and ~64! are substituted into Eq.~61a!, the fol-
lowing relation, which the values of the parameters on the
spinodal curve must satisfy, can be obtained:

1

2
J1

6

z00
212

Ahf

2 S 2
4

hf
F~z00,f!112j D 1/2

1S 2
4

hf
F~z00,f!11D 21/2

50. ~65!

Furthermore, the value ofz00 for which ^N00&
p5^N00&

s is
satisfied can readily be estimated by use of Eq.~64!. If Eq.
~60! is substituted into Eq.~64!, the following formula can
be obtained:

J1
6

z00
511@j~12 1

4hfj2!#21/2. ~66!

Therefore, using Eqs.~65! and ~66!, the values ofz00 andf
for which ^N00&

s5^N00&
p is satisfied can be determined if

the values ofh andj are given.
The changes in the percolation threshold, evaluated

through use of Eqs.~60!, ~61a!, and ~62! for z0524, 26,
and27, are displayed in Fig. 1. The change in the percola-
tion threshold evaluated forz0527 is remarkable. The re-
sults forz0524 and26 are similar to those evaluated for
z050 @17,25# and are also similar to those evaluated for the
square-well fluids@22–24#.

It is known that a FMS containing highly charged macro-
particles has a tendency to separate into dense and sparsely
populated regions@41#. This results from the fact that in such
a system, an ordered structure may have less energy than a
disordered structure. According to the significance of this,
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regions in which an ACHS is densely surrounded by other
ACHSs can easily occur when the ACHSs are highly
charged. Such a phenomenon should enhance the generation
of phase separation. This suggests that phase separation
should be more easily induced than percolation if the ACHSs
are highly charged. With respect to the behavior of the per-
colation threshold depicted in Fig. 1, the derivation of the
interpretation should be based on the phenomenon men-
tioned above. In addition, the similarity between ‘‘the disap-
pearance of the percolation due to the increase in whichuz0u
induces two effects~the excitement of repulsion between
ACHSs and the excitement of attraction between an ACHS
and a point charge!’’ and ‘‘the nonstabilization of the liquid
phase@9,32# due to the reduction of the attractive-interaction
range in the Yukawa fluids’’ should be noted in view of the
fact that a range, within which the behavior of the ACHSs
can be effectively subjected to the potential of mean force,
can depend onz0 .

Ultimately, the approximation used in the present work
for C i j

1(r ) is similar to that forci j (r ) in the MSA. The
average coordination number^N00& evaluated on the basis of
this approximation equals 2 whenz0 is zero. This agrees
with the result obtained for the PYA@17#. Therefore, it can
be concluded that the accuracy when making use of the ap-
proximation is nearly equal to that when employing the
PYA.

APPENDIX: ELECTRONEUTRALITY CONDITION

The electroneutrality condition in a FMS can be repre-
sented as

4p(
k
zkrkE

0

`

gik~ t !t
2dt1zi50. ~A1!

Considering Eqs.~6!, ~15b!, ~15c!, and~15d! with the use of

exp~bui j !5@exp~2bui j
1!1exp~2bui j* !#21,

the following relations can be obtained:

gi j
PY~r !5Pi j ~r ! ~0,r<s i j ! ~A2!

and

Pi j ~r !5
Ci j

1~r !

12exp~bui j
Coul!

~s i j,r !. ~A3!

According to the PYA, the relation betweengi j
PY(r ) and

ci j
PY(r ) is given as

gi j
PY~r !5

ci j
PY~r !

12exp~bui j !
. ~A4!

When considering the MSA, Eq.~A4! can be modified as

gi j
PY~r !5

2bui j
Coul

12exp~bui j
Coul!

~s i j,r !. ~A5!

On the other hand, considering Eqs.~17a! and ~17b!, Eq.
~A3! can be modified as

FIG. 1. Percolation loci and spinodal curves fora0
258.7931027

cm, s05531027 cm, z151, and z2521. ~a! z0524, ~b!
z0526, and ~c! z0527. Solid curve, locus of the percolation
threshold; dashed curve, spinodal curve; NP, nonpercolating region;
P, percolating region; PhS, region in which phase separation oc-
curs;P1 , P2 , andP3 , points wherê N00&

p5^N00&
s can be satis-

fied.
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Pi j ~r !5
2bui j

Coul

12exp~bui j
Coul!

~s i j,r !. ~A6!

Comparing Eq.~A5! with Eq. ~A6! yields

gi j
PY~r !'Pi j ~r ! ~s i j,r !. ~A7!

Therefore, by considering Eqs.~A1!, ~A2!, and~A7!, an ap-
proximation for the electroneutrality condition can be ob-
tained as

4p(
k
zkrkE

0

`

Pik~ t !t
2dt1zi50. ~A8!
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