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Percolation in fluid mixtures containing adhesive charged hard spheres

Tetsuo Kaneko
Kurakenchikuzokeisha Company, Ltd., Kita-ku shimo, Tokyo 115, Japan
(Received 31 August 1995

Percolation in a fluid mixture systeffFMS) containing adhesive charged hard sphéfgSHSS and point
charges can be analytically estimated by regarding the contact of an ACHS with another ACHS as the
formation of directly connected bonds between the ACHSs. A feature of the percolation in the FMS can be
determined via the phase diagrams displayed for the volume fragtiointhe ACHSs and the reciprocéjc
of the strength of the adhesive interaction. In theyg plane, the phase diagrams indicate that the region in
which percolation is induced is less dominant than that in which phase separation is induced if the ACHSs are
highly charged spheres.

PACS numbegps): 82.70.Gg, 64.60.Ak, 82.70.Dd

I. INTRODUCTION The stability of a dispersed state in a FMS, which con-
tains ICPs, depends on several parameters such as the densi-

Percolation behavior that contributes to macroscopic pheties of the ICPs and small ionic species, the charge on each
nomena induced in fluids has been determined from varioukCP, the charge carried by the small ionic species, and the
phenomena such as gelatid, the thermodynamic and dy- strength of nonelectrostatical attraction between the ICPs. As
namic properties of liquid watef2], and the conductor- is well known, the addition of small ionic species to an ionic
insulator transition in liquid metalg3]. The contribution of  colloidal system can cause the ICPs to aggreafd. If
percolation behavior to the properties of a water-oil micro-particular conditions are satisfied, the aggregation of the
emulsion(WOM) [4] can be recognized from several mac- |CPs may induce the gel phaE&]. In order to obtain infor-
roscopic phenomena. As such phenomena, the electrical copation concerning such aggregation, a FMS composed of
ductivity of WOMs [5,6], the dynamic viscosity of WOMs  ACHSs and point charges can be useful as a model system
[6], and the dielectric permitivity in WOME7] are remark-  gjnce the mathematical estimation relevant to the aggregation
able. The generation of the gel phase due to the aggregatiof} |cps can be easily carried oit2]. In the present work, a

of ionic colloidal particles(ICPs [8] can be regarded as FMS is employed to obtain information on the aggregation
percolation behavior in a fluid that contains particles havingﬁhat induces percolation

both e!ectrostatlc repulsion and short-ranged nonelectrostatic When the estimated size of the physical clusters is re-
attraction. . T . T .
quired to obtain information of the percolation in a fluid

Percolation behavior in a fluid consisting of particles ma : i . .
gorp ; yec_omposed of particles with particular properties, the concept

tween the particles. If an interaction between the particled @ Physical cluster as introduced by HJL3] plays an
yields attraction, the formation of particle clusters can begMportant role. Hill demonstrated that the contribution
enhanced. Depending on the characteristic of the attractio$XP(— BUj;) of thei andj particles, due to the pair potential
which can determine microscopic structures such as the sizéj » {0 the grand partition function for a fluid system con-
and number of clusters, particular features of the fluid can b&ining these particles can be divided into two paa8|.

5 )
formed. According to the estimation of Hagen and FrenkeON€ part expt Buj;) represents the portion dependent on

[9], the liquid phase of a fluid consisting of hard particlesuiJir contributing to the interaction between thendj par-

having an attractive Yukawa interaction is unstable when th&iclés having relative kinetic energy not exceeding the mag-
range of the attractive part of the Yukawa potential is lesdlitude of —uj; (u;;<0). Hereu;j is the effective potential
than approximately one-sixth of the hard-core diameter. ~ Petween the and | particles that form a bound pair. The
The present interest, generated by the fluid behavior dedther part is given by exp(Auy), being dependent onjj
pendent on the characteristics of the interactions between tif@ntributing to the interaction between thandj particles
particles, is focused on percolation in a fluid containing hardhat have relative kinetic energy exceeding the magnitude of
particles having both electrostatic repulsion and short-ranged Uij (Uj;<<0). In this casey; is the effective potential be-
nonelectrostatic attraction. The present work is concernetiveen thei andj particles that form an unbound pair. uf,
with continuous percolation in a fluid mixture systéRMS) is positive,u? is equivalent tay;; . Then,u ;] is infinite. The
composed of adhesive charged hard sphéf&3HSS and  coefficient8 mentioned above is defined gs=1/kT, where
point charges. The ACHSs are charged spheres with an ad-is the temperature arkithe Boltzmann constant.
hesive interaction that contributes to attraction in the imme- By introducing exp( ,Buﬁ) and exp¢-Buy), the state of
diate vicinity of their surfacef10]. a bound pair of and| particles can be distinguished from
the state of an unbound pair bfindj particles in the grand
partition function[13]. This indicates that, from the products
*Mailing address: Kogane Kazusa-cho 16-1, Matsudo-shi 270, Jaof f functions corresponding to Mayer's mathematical clus-
pan. ters, particular products containirig functions[defined by
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the use of exp{ Bu fjr )] can be extractedl4]. The particular rived from the PYA yielded fairly good estimates, except at
products containing ™ functions can then represent physical low temperatures and high densities.
clusters. Owing to this fact, the pair-correlation function The adhesive potential can be described as an infinitely
gjj(r) can be expressed as the sum of the two contributionsjarrow and infinitely deep square-well potential. Using the
as demonstrated by Coniglio, De Angelis, and For{di]. PYA, Chiew and Glandf17] analytically derived the perco-
One contribution is given by the pair-connectedness functiomation threshold for a fluid system containing hard spheres
Pij(ri,rj). This function is defined such that interacting with the contribution of the adhesive potential in
pip;Pij(ri,r;)dridr; represents the probability that a particle the immediate vicinity of their surfaces. This fluid system is
in dr; atr; and another particle idrj atr; simultaneously a system where the first-order phase transition can be in-
belong to the same cluster. The other contribution is given byluced, as shown by Baxt¢i0]. Seaton and Glandi25]
the blocking functionDj;(r;,r;). This function is defined demonstrated that the percolation threshold evaluated by
such thatp;p;D;; (r; ,r;)dr;dr; represents the probability that means of the PYA for a fluid with adhesive hard spheres
a particle indr; atr; and one indr; atr; do not simulta- agreed rather well with that evaluated by means of Monte
neously belong to the same cluster. Carlo simulations, except at extremely low densities and suf-
For estimating percolation behavior induced in a fluid, theficiently high densities. Also, simulations of a fluid system
pair-connectedness function should be known. The pairbased on a recent Monte Carlo algorithm were performed by
connectedness function satisfies the Ornstein-Zernike reldcranendonk and Frenk§R6].
tion established by Coniglio, De Angelis, and Forifhg]. Presently, it should be noted that a size monodisperse
Using the Percus-Yevick approximatiofPYA) and the system consisting of equally sized adhesive hard spheres,
Wiener-Hopf factorization technique introduced in the workwhen treated in an exact manner rather than with the PYA,
of Baxter[16], Chiew and Gland{17] analytically estimated does not have thermodynamically stable phases that possess
the percolation behavior described by the Ornstein-Zernikgractically physical meaning, as was demonstrated by Stell
relation in the permeable and adhesive sphere systems. Th27]. Fortunately, when such a system is treated by an ap-
formally exact closure for solving the Ornstein-Zernike rela-proximation in which the singularity induced by tldfunc-
tion has been derived by St¢ll8]. tion can be avoided as in the PYA, it can be regarded as a
When the distance between particles is within at least aiseful model having thermodynamically adequate properties
certain range, particular microscopic behavior, for example}10,26,28,29 For the approximation, it has been shown that
electron transfer and exited energy transfer, can significantlfhe system can undergo a gas-liquid transitj@8] or a
occur between the particles. The particular macroscopic besolid-liquid transition30]. The approximation applied in the
havior induced by the microscopic behavior mentionedpresent work corresponds to the approximation mentioned
above, such as the electric conductor-insulator transition in above.
fluid, can be simply regarded as the percolation behavior in a The pair potential, with a hard core and Yukawa tail, is
fluid composed of hard-core permeable-shell sphéres  more realistic than the square-well potential having a hard
the penetrable concentric shell modBICSM)] or that in a  core. Using the pair potential and the mean-spherical ap-

fluid composed of randomly centered sphe(BLSg, al-  proximation(MSA), the percolation behavior in fluids con-
though it is assumed that no attraction exists between thsisting of Yukawa hard spheres was examined by Xu and
particles. Stell [31]. These fluids do not have a stable liquid phase if

DeSimone, Demoulini, and Strafl9] analytically esti- the range of the attraction part of the Yukawa potential is
mated the percolation behavior in PCSM fluid systems usingufficiently short ranged9,32]. The gas-liquid transition
the PYA. From Monte Carlo simulations of PCSM fluid sys- then disappears in the fluids. The range of the attractive part
tems, Sevick, Monson, and Otlii@0] revealed that the suc- of the pair potential between particles determines the stabil-
cess of the PYA in determining the inverse mean cluster sizéy of the liquid phase in a systerfor example, either a
could be regarded as quite satisfactory in view of the simmolecular systemi33] or colloidal system$34]).
plicity with which it can be applied to complex problems. In  In contrast to the gas-liquid transition, a dense system of
addition, an alternative approximation scheme, beyond thepherical particles with a short-ranged attractive interaction,
Percus-Yevick closure, was applied by Chiew and $&11  due to either the Yukawa potential or the square-well poten-
to study the percolation behavior in a one-component RC$al, can undergo a first-order transition from a dense to a
fluid. more expanded solid phase having the same stru¢8ie

By regarding the attraction between particles as the conSuch a solid-solid transition at finite temperatures, however,
tribution of a square-well potential, percolation behavior duecannot occur in a system composed of noncharged adhesive
to attraction has been studied. With the use of Monte Carldvard spheres of equal diameter, as predicted in the work of
simulations, Safran, Webman, and Grga2] estimated the Stell [27]. Frenkel and his co-worke($85] revealed that at
percolation behavior in square-well fluid systems. Employ-finite temperatures, the only stable phases in this system are
ing the PYA, Netemeyer and Gland3] numerically deter- the close-packed solid and the infinite-dilute gas. In the sys-
mined the percolation threshold and the pair-connectednessem, all other phases are metastable.
function for a square-well fluid system. Chiew and Wang When the nonelectrostatic attraction between ICPs, con-
[24] determined the percolation thresholds and the pairtributing within a sufficiently short range compared to the
connectedness function for a square-well fluid from Montediameter of the ICP, can no longer be ignored, the pair po-
Carlo simulations. They demonstrated, furthermore, on théential contributing to the interaction between the ICPs may
basis of a comparison between the Monte Carlo data and thatroduce a complexity to the analytical estimation of perco-
Percus-Yevick solution, that the percolation threshold deiation. The pair potential can then be given as the sum of the



6136 TETSUO KANEKO 53

Coulomb potential, the potential contributing to the nonelec- 9ij=Pij+Dj; . (1)
trostatic attraction, and the hard-core potential. If the poten-
tial contributing to the nonelectrostatic attraction can be re- The Mayerf function f;; =exp(— gu;;) — 1, according to
garded as an adhesive potential, the complexity should bHill's concept[13], is separated into two parts as
easily avoided. This is expected from the fact that the inte-
gral equation for the pair-correlation functigg) (r) in FMSs fiy="f+f*,
consisting of ACHSs can be analytically solvggb,37]. In
order to analytically estimate percolation behavior in a sysWherefﬁ
tem containing ICPs, it is possible that a FMS containing . . . .
ACHSs that interact with an adhesive potential, a Coulomb fij=exp(—Bu;j), fij=exp(—puj)—1.
potential, and a hard-core potential is a rather realistic model N . ]
system, when the contribution of the nonelectrostatic attract€nce thef j andfj; represent the bound and unbound pairs
tion must be considered. It has been demonstrated that @ Particles, respectively. In Mayer's mathematical clusters
system containing adhesive hard spheres could lack adequdféefined in terms off;; bonds, which constituteg;; , each
thermodynamics[27]. Fortunately, the FMS could be a bondf;; should be replaced b +f;; in order to find dia-
model with thermodynamically adequate properties since thgrams contributing taP;; . Thus it can be proved that the
FMS is treated by an approximation in which a singu|aritydiagram5 that should be identified with the collection of dia-
induced by thes function can be avoided. grams with at least one path of &l bonds between the root
Percolation behavior in the multicomponent FMS must bePointsi andj are contained in the diagrams contributing to
estimated by solving the Ornstein-Zernike relation for thedij , s shown by Coniglio, De Angelis, and Forigab].
pair-connectedness function. The Ornstein-Zernike relation The contribution of the diagrams tB;; can be divided
for this FMS was established by Chiew, Stell, and Glandtinto two parts. One part is the contributidw;; of nodal
[38] while deriving the formally exact closure for this rela- diagrams with at least one path of dll bonds betwee
tion. Employing the PYA, they also analytically obtained theand j. The other part is the contributio ;] of non-nodal
pair-connectedness function, mean cluster size, and percolgiagrams with at least one path of 4l bonds betweer
tion thresholds for both a FMS consisting of RCSs and onéndj. Thus it should be expressed as
consisting of permeable spherg&8]. Wu and Chiew[39] N .
studied the percolation in binary mixtures of RCSs, based on Pij=Cij +Njj . 2
a selective particle-connectivity criterion. When, in the crite- ) ) ) o
rion, particles of different species are allowed to form di-A nodal diagram is a diagram containing at least one nodal
rectly connected bonds, the percolation densities differ conPCint. A nodal point is defined as a field point such that all
siderably from those found in a simple percolation problemPaths between andj pass through that point. If the nodal
for a binary mixture of RCSE39]. Q|agram has_at Igast one path o_f &l bonds _bgtween and
In the present paper, percolation will be analytically esti-] @nd the poink is the nodal point closest toin the nodal
mated for the formation of directly connected bonds betweerfiagram(so that+the diagram betweerandk does not have
the ACHSs contained in a FMS that also has point chargedlodal pointy, Njj is then given by a convolution integral as
The percolation threshold must be estimated for the FMS in m—1
order to find the dependence of the percolation behavior on +_ +
the charge of the ACHS. The charge is a significant factor Nij = go Pi| CikPig dric. ®
that strongly influences the aggregation of the ACHSs.
Therefore, the change in the percolation threshold due to theerem is the number of species that may occupy the nodal
change in the magnitude of the charge is presently of interpoint k. Thus the Ornstein-Zernike relation similar to that
est. For this reason, the influence of the charge on the pederived by Coniglio, De Angelis, and Foriafl5] is ob-
colation threshold will be briefly examined. tained from Eqgs(2) and(3) as

andfi’j are defined as

m-1

Il. PAIR CONNECTEDNESS n i

Pij:Cij+2 pkf Cikijdrk. (4)
By using the pair-correlation functiog; , the probability k=0
of locating ani-species particle and gspecies particle in
volume elementslr; atr; (pointi) anddr; atr; (point j),

respectively, is given as

This equation is an Ornstein-Zernike relation for the pair-

connectedness function in a multicomponent system and cor-

responds to that derived with the derivation of the formally

pip;ig;j(ri,r)dr;drj, exact Closure by Chiew, Stell, qnd GIar[G_B]. o

According to the PYA, the pair-correlation funcﬂgﬁ is

where p; and p; are the densities of the species and given by

species, respectively. This probability is the sum of two

contributions. The contribution is the probability gy, exp(Bui)) =1+Nj; , (5)

pip;Pij(ri,r;)dr;dr; that a particle indr; atr; and another _ o _

particle indr; atr; belong to the same physical cluster. Thewhere N;; is the contribution of the nodal diagrams. The

other contribution is the probability;p;Dy;(r; .r;)dr;dr; that ~ contributionN;; can be separated into two terms;j and

the two particles do not belong to the same cluster. Hencéli’} . The termNi’j is the contribution of all nodal diagrams

the pair-correlation functiog;; must be expressed as composed of no paths of all” bonds between andj. By
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Con5|der|ng Eqs(l) (2) and (5) with exp( lBulj) f++f* BaXter[lO]. In ECIS(ll@ and (11b), Oij is defined with the

+1, a closure condition imposed @, andC;| is obtained  Use of the diametes; for thei species and the diametey
as for the ] species as

=Yg +0o
Py =exp(— Bu;) gl exp( Bu;j) + exp — Ul ) (P —Cil). oij=z(oit+aj). (12
The pair-correlation functiory;;(r) within the core is then
This formula corresponds to that given by Coniglio, De An-9diven by

gelis, and Forianf15] and is an approximate expression for
the exact expression given by Chiew, Stell, and Gl4a6. gi(r)= 0” s(r—oyj), O<r<oy, (13)

lll. MEAN SIZE OF PHYSICAL CLUSTERS where x;; is the association parameted6,37. The param-
A. Determination of the mean size eter ;; is expressed in terms of the mean vall;) (an
average coordination numbefor the number off ACHSs

The mean size of physical clustesss given by contacting ari ACHS as

> s?n

57 ~ 3Ny (14)
> sng - .

s The average coordination number is expressed as

whereny is the equilibrium number of physical clusters con- ot

sisting of s particles. If the number of species that may be <Nij>:PjJ ! gij(f)47ﬂ2dr,
included in the physical clusters m, the relation between 0

Pi; andng, according to the formula given by Coniglio, De \yhere

Angelis, and Forianf15], should be given by

+ .

oi=limo; = 6.
-1m-1 ij ij

m m 550

2 s(s=1ng=2> X pipj | Pydridri. (8
s=2 =0 j=0 According to the definition of Chiew and Glar{dt7], it is
assumed that the contact of one ACHS with another results
in the formation of directly connected bonds between the
ACHSs. Then, Hill's concepf13] can yield the following

relations owing to Eqs(11a and(11b):

If it can be assumed that the probability of i species
existing in a cluster is independent®fp; in the volumeV is
then given by

=_ gij
Py P2 S O extt-puy (1= 15 oydr—oy), O<r=oy, (158
Dividing Eq. (8) by 2.sn; and considering Eq49) and (7), _ant _ 3
the mean size of the physical clusg&m an isotropic system X~ By (N]=0,  oj=r, (150
can be determined using the pair-connectedfess) as exfl - AU (N]=0, 0<r=<a;, (150
m—1 m—-1 d
S= E Z plpjf Ij (r)dr. (10 an
E P exd — Bufj(n]=exd - Buf™(r)], o;<r. (159
Substituting Egs(13), (153, (15b), (150, and(150) into
B. A FMS containing ACHSs Eq. (6), the following relations are obtained:
The pair potentiali;j(r) in a FMS with ACHSs is repre- Xjj
sented as P”(r) 0'”5([' O'ij) 0<r$0'ij, (166)
extl — Bu;; (r)]= a,,(s(r o), 0<r=oy (119 2and
Ci(n=Py(nN{l—exd Buf®(N1}, oy<r. (16b
and

As can be seen in E¢16b), the relation betwee@ﬁ(r) and
exf — Bu;j(r)]=exd — lgucou' ()], o;<r, (11b Pi;(r) has the same form as the relation betwggfr) and
the direct correlation functiom;;(r) due to the PYA. Ac-
where(;; is a parameter representing the strength of the adeording to Eq.(16b), C,J (), as well asc,J(r) approaches
hesive interaction anthO“'(r) the Coulomb potential be- zero at least owing to the terfil—exqAu; Coulry]) asr
tween thei-species ACHS and thg¢-species ACHS. The increases. Therefore, by considering the apprOX|mat|on used
reciprocalf j; ! corresponds to the parameteintroduced by by Xu and Stell[31] for analytically estimating percolation
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in Yukawa fluids, it is assumed that;; i (r) has an approxi-
mate expression similar to that faoy; (r) due to the MSA.
Thus the approximation fo€ ;f j (r) is represented as

Cil(r)=CJ*(r)—lim Buf®(r)exp(—ur), (178
u—0
where
Cif(r)=0, oj<r. (17h
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wheree is the macroscopical dielectric constant of the FMS.
Baxter’sQ function, dependent on the nature@)ﬁ(r), can
be introduced via the equati¢66,37_|

6~ CY 10+ Z Qu(Qu(—k), (29

where the left-hand side is equivalent & — C j(k) and
Qij(k) is

In Eq. (173) (o i (r) is split into two parts: the short-ranged
part C () and the remainder, which equals the long-
ranged contribution. The remainder has an exponential %
damping factor containing the parameter introduced to +(Pipj)1/2Aijf exp(— ur)exp(ikr)dr,
avoid the divergence of the integrals. This expression for il

ij’(r) has the same form as an approximate expression for

Cij(r), which should be given in a FMS with particles having
long-ranged interactions, such as Coulomb interactid$

By using the approximate expression given in EZg, an
analytical expression fd8 can be somewhat readily derived
from a pair-connectedness function that satisfies @g. gng

since a mathematical treatment used in the derivation of ana-

lytical solutions for the pair-correlation function in a FMS \ji=

Q=5 —(pip;)”zf:”Qﬁ(r)exp(ikr)dr
ji

(26)
with

QI(r)=Qyj(r)+Ajexp — ulr|) (27)

i(oj—ay). (28)

containing ACHS436,37] is applicable.
Considering Eq(173), the Fourier transform of Ed4) is
given by

> [t Pul6G-C(1=8;, (19
where

By=2(pip) | Jyrcosknar a9

and

E-*-(k)=2(p-p-)1’2foc8+-(r)cos(kr)dr— lim —
ij iPj o i 40 k24

(20

with
Sﬁ(r)szJmCﬂ*(t)t dt, (22)

and
aij=ag(pip))Vziz; . (23

Here the charges of theACHS andj ACHS arez;e andz;e,
respectively, andv3 in Eq. (23) is defined as

2
, 4mpe
a0= y
&

(29)

The expression fo@ (r) defined by Eq(27) should be zero
just beyond the contact distance, owing to the nature of
CY*(r) [36,37, i.e.,

Q}(r)=0

When the formula obtained by multiplying both sides of Eq.
(25) by exp (—ikr) is integrated with respect to over the
entire range from-o to +o, the divergence of this integra-
tion [the same integration as that in the process for estimat-
ing g;;(r) [36]] at the limit =0 can be avoided if the coef-
ficients Aj; introduced in Eq(26) satisfy the relation

m—1

:(Pipj)llzkzo PrAIA K -

As is known via the estimation of the pair-correlation func-
tion in the FMS containing ACHSE36], the comparison of
this relation with Eq(23) results in the determination of the
relation

Aij=zaq;, (30)
where
m-1
2 P ab, (31)
Substitution of Eq(25) into Eq. (18) yields
m—1
8 +Py (= 2 Qut(—k)Qy'(K). (32
From Eq.(32), the following formula can be derived:
m—-1
(Pin)llzf Pij(r)dr=—4;;+ kgo 5;1(0)5;,»1(0). (33
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Substituting Eq(33) into Eq.(10) results in the mean cluster
size S being expressed with th® function as

m—-1[m-1 ) 1/2 2
=% |3 (p—t) ;%0 , (343
i=0 | j=0 \ P
where
m—1
p'=2 b (34D

Thus S can be evaluated whef[)i]l(O) is given.

C. Estimation of 6“*1(0)

The formula for the formal determination @i]l(—k)
can be obtained by modifying E¢32). If both sides of this
formula multiplied by exp ¢ikr) are integrated with re-
spect tok over the entire range from to +% by consid-
ering thatQi}l(—k) is nonsingular, then the following for-
mula can be obtainel86,37:

m-1 o
jij(r):Qin(r)—Aij+ > Pkf "t Jik(lr_t|)QEj(t)
=NV

m—1
-3 o athudlr-thay. @
k=0 Njk
Comparing the differencéij(ai})—jij((rﬁ) estimated by
the use of Eqs(16g and(21) with that estimated by the use
of Egs.(35), (163, and(29) yields

0 _m 2
Qij(ai)) = 5 Xijoij- (36)
Substituting the derivative of E¢21) with respect tar into
the derivative of Eq(35) with respect tor, the following
relation for theQ function can be obtained:

d m—1
aQﬂ-(f):go pdikAg;  (r<ayy), (37
where
Ji=Jik(0). (38

Integration of Eq.(37), taking into account Eqg29), (30),
and(36), results in

Qi (N=(r—apQ;+Qf (r<ay), (39
where
Qij=Bja (40
and
1= Mot @
with
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m-1
Bi= go PrdikZk - (42
If Eq. (39) is substituted into E26), the following equation
can be obtained:

5”-(0)= 5jj _(Pin)llszii(Qi}\j - %O'iiQi,j)

exp(— uAjj)
+(pipj)) iz —, (43
Assuming thaCﬂ* has a symmetry similar to that of the
direct-correlation functiori36,37], the following relation is
determined:
S (\ji) =S (\j)). (44)
ForSjT(r), which can be derived from the integration of Eq.
(25) times exp(ikr) with respect tdk over the entire range
(—oo<k<x) [36], the relation given by Eq44) results in

Q) — A =Qf (N — A

If Eq. (39) is substituted into Eq45), the following re-
lation betweerB; anda; can then be obtained:

(45

—(O'iiBi"FZi)aj:(O'jij+Zj)ai+Q}\i—Qi)}. (46)
Moreover, by substituting, given by Eq.(46) into Eq.(31),
the following formula is determined:

m-1 m—1 m—1

a2 > pZi—2a 2 pZdQhi—Qh)+ X pu(Qhi— QM2
=0 =0 &0

—afz?=0,

47
where

Zj=0jiBj+z. (48)
Next, sinceld;, is defined by Eq(38), substitution of Eq.

(35) into Eq. (42) yields
m—1

Bj=-— kZo Pr(Zct 3 0B okBia;

m—1 m—1

A 2
+ kZO pr(Zk+ o1 Bi) Qi — kZO PrZia,

m—-1 m-1

—27720 kZo p|Z|kakaj JO P|k(t)t2dt (49)

If Eq. (48) and the electroneutrality condition discussed in
the Appendix are considered, E@9) can be modified as

m—1 m-1

aio:;
L kZO pZi+ o kZO PZQkj+z.  (50)

Zj=——5"

Thus the unknown factors andZ; can be determined by
the use of Eqs(47) and (50), so thatQi’j given by Eq.(40)

can also be determined since it can be estimated through Eq.
(48) as
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Z,—

Tij

Z

Qj= (51

aj .
Ultimately, the unknown factorQi'j anda; in Eq. (43) can
be estimated using Eq#7), (50), and(51), so thatQ;;(0)
given by Eq.(43) can also be determined. If the inverse of
Qjj(0) is substituted into Eq(343, the mean size of the
physical clusters$ can be obtained.

IV. PERCOLATION IN A FMS

A. A FMS composed of ACHSs and point charges

The value onI (0) is given by Eq.(43), so that
3(p))VQ;;1(0), which is necessary for evaluatii®j can be
estimated. The estimation of the inversef(0), however,
is difficult.

It is assumed that in the FMS containing ACHSSs, the

adhesive interaction exists only between the charged hard
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The coefficienty defined by Eq(55) can be determined as a
coefficient independent of species by considering @6)
with Eq. (48) whenQ} — Q% =0 is satisfied.

Using Egs.(53) and (56) with Egs. (51) and (55), the
following formulas can be obtained:

> () ¥R50)= o Voor? (568
Z (pi)l’551(0)= é \/E[Kz"‘Po(Zo_Zl)(Zo_zo)
+p2za(21—25) 3(Noo) 1, (56b)

and

> (p)MR5(0)= o Vool 12+ polz0~22)(Zo~ 20)

spheres of species 0, while species 1 and 2 are point charges.

This can be expressed as

Koo 0, Xp1= K= A10= A= X117 X10= A= Xo=0,
(529
00#0, o01=0,=0. (52b

Equation(43) can then be simplified, so théﬁl(O) at the
limit ©=0 can be readily derived as

+p121(2,—21) 3(Noo) ], (560

where
K?=pozZo+ piZi+ pyzs.
Substitutinga; given by Eq.(47) into Eq. (50) results in
the formula

2 2 1/2

2 ! (Ngg) + 20 1+ i (poZi+p,Z2+p,22)| =0
~_ ~ o A a 5 {Nog) + 5= 2 Potot p1Z1T p2Z; =
DoQ;; H(0)=M;;—ABj+8; >, AB 2 z 4
= (57)
(i=0,1,2; j=0,1,2, (53 since the conditions described by Eq&2a and (52b
should be satisfied. Therefore, the unknown coefficiént
where can be determined by use of E§7).
Ooi O1i Oy ,
R n “ ~ ~ B. FMS percolation
Mij=(—A18,j+A28;5)| Bo B1 By, . _—
The mean cluster siz8 can be evaluated by substituting
Yo Y1 VY2 Egs.(56a), (56b), and(560) into Eq. (348 as
E(p|)1/22i1 Y 2 1 ~
R S= 5@ E S, (586)
B; E(P|)l/2a| )
, where, owing to Eq(34b) and the electroneutrality condi-
Yi=— (PoPi)llz(foo(Qgi —3000Q01), tion,
and 2 z,
) ) =|1=>|pot|1——]p2 (58b)
D= y(pozoZo+ p125+p225) ! 4
p1Zi+ paz5 and
x|\ 1- P0ZoZot+ 22+ p,7> 2<NOO> (54) 4t 2 t
Pofoc0™ P1217 P2%2 =k"p'+po(Zo—20){ kL po(Zo—20) + p'20]
with +20p'[ poZo(Zo—20) + K?1}
_ ; (55) +7p2(p' = po—p2) (21— 22)XNoo)
' X{(k2 = poz3){Noo) =4[ poZo(Zo—20) + K1}
The average coordination numbg@X introduced in Eq. (589

(54) can be found by substituting E¢L4) into Eq. (41) as

The mean cluster siz8 becomes infinite at the percolation

(Noo)=200000Qb0- (56)

threshold, so that the percolation transition occur®%0.
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Hence the average coordination number at the percolation - 1
threshold should be determined by using Esf) as [TP]*=—F(£bo, 9P+ 7 7 PP(L=¢)
POZOZO ) 1 12 2
Noo)?=2| 1+ ———|, (59 1 =1 N—— P
< OO> plzi—"—pZZ% + 8 2;—« + {80 <N00> 1 (62)

where(Nog)" representgNyg) at the percolation threshold. \yheregP, =P, and{ B, are the values o, =, and{y, at the

This result is the same as that obtained for a fluid of NONpercolation threshold, respectively. The valueghbfand §,

charged adhesive hard spheféd] if z, equals zero. The 5 n=7' andé=¢ can be determined by the use of E(g0),

value of (Nop)” at z,#0 is greater than 2, however, since (g1, and(62).

ZoZo is positive, based on the relatiag/Z,>0, which can If phase separation, the so-called spinodal decomposition,

be derived from Eqs(47) and(50). . due to the aggregation of ACHSs can be induced in a FMS,
Ultimately, by substitutingZ, derived from Eq(59) into  the following condition[12] should be satisfied:

Eqg. (57), {NggP can be obtained as

x(17,6,ED)+ D (Loo, 7,6)<O0.

(NooP=2{1+[&(1-F7pEH] 1, (60)
A spinodal curve found for this FMS corresponds to a curve
where determined with parameters that satisfy the condifitil
= 3 ~
=mpo7olb, x(7.6,0)+® (oo, 7.6) =0. (63
77560132(2)/7700, Therefore, if the average coordination number evaluated for
the values of the parameters on a spinodal curve is expressed
and as (N, it should satisfy the following relation owing to
Eq. (61b):
£=2,129+ (p2/po) (21— 25)(2,125). g (61
On the other hand, the relation betwe@i,,) andZy, has (Nop°=2E + 1—2 (64)
been given elsewhefd2]. It is assumed that Eq$529 and oo

(52b), as well as the electroneutrality conditiompg
+21p,+2,p,=0, can be satisfied. The value @fly,) can
then be determined from the parameté&ys », & and ¢, by
the use of the two equations

If Egs. (63) and (64) are substituted into Eq619), the fol-
lowing relation, which the values of the parameters on the
spinodal curve must satisfy, can be obtained:

1 6 no 4 12
SO R R b 1z 0 e (——F r1-
<N00>=2+2F+:‘,—(m) (61@ 2 gOO 2 77¢ (§001¢) g
4 —1/2

and =g Fllnd)+1] =0, 65

12 ~ . .
(Nogoy=2E + g——Z\/E[Mn,gb,g;F)—i—q)(goo,7],¢)]1’2, Furthermore, the value afyg for which (Ngg)”=(Ngg)® is
00 619 satisfied can readily be estimated by use of &d). If Eq.

(60) is substituted into Eq(64), the following formula can

where T is an unknown coefficient determined via theseP® obtained:
equations. The other terms are defined as

S E+£=1+[§(1—%n¢§2)]’1’2- (66)
x(7,¢,ED)=T?+ 1 n¢¢, oo
& n.d)=F D) —Lne, Therefore, using Eq¢65) and(66), the values of,, and ¢
(£o0. 7. $)=F(Loo0.#) ~ 274 for which (Ngg)®>={(NgP is satisfied can be determined if
and the values ofy and ¢ are given.

The changes in the percolation threshold, evaluated
through use of Eqs60), (613, and (62) for z,=—4, —6,
and —7, are displayed in Fig. 1. The change in the percola-
tion threshold evaluated far,= —7 is remarkable. The re-
with sults forzy=—4 and —6 are similar to those evaluated for
z,=0[17,25 and are also similar to those evaluated for the
2 /6 — square-well fluid§22-24.
+ §_oo_ 1. It is known that a FMS containing highly charged macro-

) particles has a tendency to separate into dense and sparsely
If the unknown coefficientl’ at (Ngg)=(Ngp? is ex-  populated regiong41]. This results from the fact that in such
pressed a¥P, by making use of Eq61b) with given values a system, an ordered structure may have less energy than a

of n=7" and&=¢, I'° can be determined as disordered structure. According to the significance of this,

]
=
f—

64
1-¢’

1_, 1(6
F(loo,d)=7 E°+5 oo
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FIG. 1. Percolation loci and spinodal curves g=8.79x10"’
cm, 0p=5x10"7 cm, z;=1, and z,=-1. (@ z,=—4, (b

Zo=—6, and(c) zo=—7. Solid curve, locus of the percolation
threshold; dashed curve, spinodal curve; NP, nonpercolating region;

regions in which an ACHS is densely surrounded by other
ACHSs can easily occur when the ACHSs are highly
charged. Such a phenomenon should enhance the generation
of phase separation. This suggests that phase separation
should be more easily induced than percolation if the ACHSs
are highly charged. With respect to the behavior of the per-
colation threshold depicted in Fig. 1, the derivation of the
interpretation should be based on the phenomenon men-
tioned above. In addition, the similarity between “the disap-
pearance of the percolation due to the increase in wilzigh
induces two effectdthe excitement of repulsion between
ACHSs and the excitement of attraction between an ACHS
and a point chargé and “the nonstabilization of the liquid
phasd9,32] due to the reduction of the attractive-interaction
range in the Yukawa fluids” should be noted in view of the
fact that a range, within which the behavior of the ACHSs
can be effectively subjected to the potential of mean force,
can depend on,.

Ultimately, the approximation used in the present work
for Cﬁ(r) is similar to that forc;;(r) in the MSA. The
average coordination numb@N,,) evaluated on the basis of
this approximation equals 2 whexy is zero. This agrees
with the result obtained for the PYRAL7]. Therefore, it can
be concluded that the accuracy when making use of the ap-
proximation is nearly equal to that when employing the
PYA.

APPENDIX: ELECTRONEUTRALITY CONDITION

The electroneutrality condition in a FMS can be repre-
sented as

4772 kakf gik(t)tzdt-l—zi:O. (Al)
k 0

Considering Eqgs(6), (15b), (15¢), and(15d) with the use of
exp( Bu;;) =[exp(— Bu;;) +exp(— Bui)] 7,

the following relations can be obtained:

gl (N=Py(r) (0<r<oy) (A2)
and
ijr(f)
Pij(f)ZWg (oj;<r). (A3)
ij

According to the PYA, the relation betweegf;*(r) and
cijY(r) is given as

gh(n)= c (D)

~ 1-expBu;)’
When considering the MSA, E¢A4) can be modified as

(A4)

PY(ry= _’Buﬁou'

P, percolating region; PhS, region in which phase separation oc-

curs; Py, P,, and P53, points where(Ngp)P={Ngp?® can be satis-

fied.

On the other hand, considering Edq4.7a and (17b), Eq.
(A3) can be modified as



Coul
— By

Pij(r)zw (O'ij<l'). (AG)
Comparing Eq(A5) with Eq. (A6) yields
g (N=Py(r)  (oy<r). (A7)
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Therefore, by considering Eq&A1), (A2), and(A7), an ap-
proximation for the electroneutrality condition can be ob-
tained as

4772 Z Py Plk(t)tzdt+ Zi:O. (A8)
k 0
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